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Centre for Computational Biology
● Centre de recherche des MINES
● Associé à un centre de recherche cancer 

(Institut Curie)
● Thématique : développement et mise en œuvre 

de méthodes de machine learning pour la 
bioinformatique du cancer



Supervised machine learning in 
bioinformatics

● Quelles données ?
– Images biologiques
– Données génomiques 

● Reads de séquençage ADN ou ARN, mutations d'une 
seule paire de base (SNPs), méthylation, etc

– Screens de composés chimiques
– De plus en plus : dossiers patients



Supervised machine learning in 
bioinformatics

● Quels problèmes ?
● Régression :

– Gene expression regulation: how much of this 
gene will be expressed?

– When will this patient relapse?
– Drug eff icacy: how well does this drug work on this 

tumor?
– What is the binding aff inity between these two  

molecules?
– How soluble is this chemical in water?



Small n, large p problems
● Few patients, many features (cost of data, rare 

diseases, invasiveness of data collection)
● Challenges of high-dimension:

– Curse of dimensionality (intuitions that work in 2D 
may not work in higher dimensions)

– Overf itting is more likely
– Problems become ill-posed
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Linear regression

typical length of a human 
protein: 100-600 amino acids 



7

Linear regression least-squares 
f it

● Minimize the residual sum of squares
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Linear regression least-squares 
f it

● Minimize the residual sum of squares

Historically:
– Carl Friedrich Gauss (to predict the location of 

Ceres)
– Adrien Marie Legendre
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Linear regression least-squares 
f it

● Minimize the residual sum of squares

Estimate � : 
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Linear regression least-squares 
f it

● Minimize the residual sum of squares

● Assuming X has full column rank (and hence 
XTX invertible):
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If n << p
● X (dimensions n x p) cannot have full column 

rank
● Therefore XTX cannot be inverted
● An inf inity of solutions exist

– One can be found using gradient descent or a 
pseudo-inverse  

– High variance of the estimator
● Large p reduces the interpretability of the model 

– Very important in many bioinformatics applications, 
but not only
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Linear regression when p >> n

Simulated data: p=1000, n=100, 10 causal 
features

True 
coeff icients

Predicted 
coeff icients
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Linear regression when p >> n

Simulated data: p=1000, n=100, 10 causal 
features

True 
coeff icients

Predicted 
coeff icients
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Regularization
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Regularization
● Minimize 

Prediction error + �  penalty on model complexity
● Biased estimator when �  �  0.
● Trade bias for a smaller variance.
● �  can be set by cross-validation.

● Simpler model �  fewer parameters
     �  shrinkage: drive the coeff icients of the 
parameters towards 0.
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Ridge regression
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Ridge regression
● Sum-of-squares penalty

● Equivalent to

     for a unique one-to-one match between t and � .

● Ridge regression estimator:

= always!
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Ridge regression solution path

decreasing value of �
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Standardization

● Multiply xj by a constant:

– For standard linear regression:

– For ridge regression:
Not so clear, because of the penalization term  

● Need to standardize the features

average value of xj
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Ridge regression
● Grouped selection: 

– correlated variables get similar weights
– identical variables get identical weights

● Ridge regression shrinks coeff icients towards 0 
but does not result in a sparse model.

● Sparsity: 
– many coeff icients get a weight of 0 
– they can be eliminated from the model.
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Lasso
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Lasso
● L1 penalty

● aka basis pursuit (signal processing)
● no closed-form solution
● Equivalent to

     for a unique one-to-one match between t and � .
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Geometric interpretation

iso-contours of the 
least-squares error 

L1 norm L2 norm

� 1

� 2

feasible region:
|� 1| + |� 2| �  t

unconstrained min.
= least-squares sol. 

� 1

� 2

feasible region:
� 1² + � 2² �  t

constrained minimum: where the iso-contrours of the error meet the feasible region. 
Because l1 balls are squares, this is more likely to happen on a corner, where some of 
the coordinates are 0. 
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Lasso solution path

decreasing value of �
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Linear regression when p >> n

Simulated data: p=1000, n=100, 10 causal 
features

True 
coeff icients

Predicted 
coeff icients
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Elastic Net
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Elastic Net
● Combine lasso and ridge regression

– Select variables like the lasso.
– Shrinks together coeff icients of correlated 

variables like the ridge regression. 
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E.g. Leukemia data

Elastic Net results in more non-zero coeff icients 
than Lasso, but with smaller amplitudes.



Supervised machine learning in 
bioinformatics

● Quels problèmes ?
● Classif ication :

– What is the function of this gene?
– Is this DNA sequence a micro-RNA?
– Does this blood sample come from a diseased or a 

healthy individual?
– Is this drug appropriate for this patient?
– What side effects could this new drug have?
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Logistic regression



31

Classif ication
● Ridge regression:

● Uses the squared loss
● For classif ication, use 

– a different decision/prediction function
– a different loss
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Classif ication
● Ridge regression:

● Uses the squared loss
● For classif ication, use 

– a different decision function
– a different loss
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Classif ication
● Model P(Y=1|x) as a linear function?

– Problem: P(Y=1|x) must be between 0 and 1.
– Use a logit transformation

                                            �  Logistic regression.
p f(x)
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Classif ication
● Ridge regression:

● Uses the squared loss
● For classif ication, use 

– a different decision function
– a different loss
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Classif ication
● Ridge regression:

● Uses the squared loss
● For classif ication, use 

– a different decision function
– a different loss: the logistic loss
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Classif ication
● Ridge regression:

● Uses the squared loss
● For classif ication, use 

– a different decision function
– a different loss: the logistic loss



37

Classif ication

– a different decision function
– a different loss: the logistic loss

y = 1 y = 0

f(x) f(x)
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Support vector machines
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Linear classif ier

Assume data is linearly separable: 
there exists a line that separates + from -
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Linear classif ier
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Linear classif ier
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Linear classif ier
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Linear classif ier
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Linear classif ier
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Linear classif ier
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Linear classif ier

Which one is better?
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Margin of a linear classif ier

Margin: Twice the distance from the separating
hyperplane to the closest training point.
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Largest margin hyperplane
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Classif ication of the training 
points

● We want the training points to be on the correct 
side of the “road” def ined by the separating 
hyperplane + margin  

● Correct classif ication of the training points:
– For positive examples:

– For negative examples:

– Summarized as 
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Hinge loss

● We want for all i:
● Hinge loss function: 

1

1
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Classif ication
● Ridge regression:

● Uses the squared loss
● For classif ication, use a different loss

– Hinge loss:
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Classif ication
● Ridge regression:

● Uses the squared loss
● For classif ication, use a different loss

– Hinge loss:

– Support Vector Machine:
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Large margin classif ier
● Minimizing the l2 norm of the regression 

coeff icient is equivalent to maximizing the 
margin
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Margin of a linear classif ier
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Margin of a linear classif ier
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Largest margin classif ier:
Support vector machines
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Dual formulation of the SVM

● Equivalently, maximize

● under the constraints
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From optimization theory
● Slater's condition (strong duality)  primal and 

dual problems have the same optimum.

● Karush-Kuhn-Tucker Conditions give us a 
relation between dual and primal solution

● Geometric interpretation

“easy” 
“hard” 
“somewhat hard” 
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Support vectors of the soft-margin 
SVM

�  = 0

0< �  < C

�  = C
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Primal vs. dual
● What is the dimension of the primal 

problem?

● What is the dimension of the dual problem?
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Primal vs. dual
● Primal: (w, b) has dimension (p+1).

Favored if the data is low-dimensional.

● Dual: �  has dimension n.

Favored is there is little data available.
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Kernel methods
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Non-linear SVMs
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Non-linear mapping to a feature 
space

R
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Non-linear mapping to a feature 
space

R R2
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SVM in the feature space
● Train: 

under the constraints

● Predict with the decision function
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Kernels

For a given mapping 

from the space of objects X to some Hilbert 
space H, the kernel between two objects x and 
x' is the inner product of their images in the 
feature spaces.

e.g.
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SVM with a kernel
● Train: 

under the constraints

● Predict with the decision function
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Kernel trick
● Many linear algorithms (in particular, linear 

SVMs) can be performed in the feature space H 
without explicitly computing the images 
� (x), but instead by computing kernels K(x, x'):
– SVMs, but also
– Ridge regression (but not the Lasso)
– Dimensionality reduction: PCA
– Clustering: k-means

● It is sometimes easy to compute kernels which 
correspond to large-dimensional feature 
spaces:       K(x, x') is often much simpler to 
compute than � (x).
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Exemple 1: Polynomial kernels

More generally, for

is an inner product in a feature space of all 
monomials of degree up to d.

K is much easier to compute than �  .
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Which functions are kernels?
● A function K(x, x') def ined on a set X is a kernel iff it 

exists a Hilbert space H and a mapping � : X � H such 
that, for any x, x' in X:

● A function K(x, x') def ined on a set X is positive 
def inite iff it is symmetric and satisf ies:

● Theorem [Aronszajn, 1950]: K is a kernel iff it is 
positive def inite.

● Matrix K(x,x') for any x, x' in X is called Gram matrix
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Exemple 1: Gaussian RBF kernel

● Corresponds to a feature space of inf inite 
dimension (containing all monomials)
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Exemple 2: String kernels
● Exemple of application: protein classif ication

Goal: predict which proteins are secreted or 
not, based on their sequence.
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Substring-based representations
● Represent strings based on the 

presence/absence of substrings of f ixed length.

– Number of occurrences of u in x: spectrum kernel 
[Leslie et al., 2002].
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Spectrum kernel

● Implementation:
– Formally, a sum over |Ak|terms
– At most |x| - k + 1 non-zero terms in 
– Hence: Computation in O(|x|+|x'|)

● Fast prediction for a new sequence x:
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Spectrum kernel

● Implementation:
– Formally, a sum over |Ak|terms
– At most |x| - k + 1 non-zero terms in 
– Hence: Computation in O(|x|+|x'|)

● Fast prediction for a new sequence x:

for proteins: alphabet of 22 amino acids
considering 5-mers: 215 > 4 million
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