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Summary

Mediation analysis breaks down the causal effect of a treatment on an outcome into
an indirect effect, acting through a third group of variables called mediators and a
direct effect, operating through other mechanisms. We provide a thorough evaluation
of estimators for direct and indirect effects in the context of causal mediation anal-
ysis for binary, continuous and multi-dimensional mediators. We consider standard
parametric implementations of classical estimators, and propose and assess the rel-
evance of several extensions inspired from double or debiased machine learning, in
particular non-parametric models, regularization, probability calibration and cross-
fitting. Our results show that most methods obtain reasonable estimates under model
misspecification, but some methods, including multiply-robust methods, are very
sensitive to (near-)violations of the overlap assumption. This trend is even more pro-
nounced in multi-dimensional settings. We also describe settings where the use of
more complex non-parametric models for estimation is relevant.
To illustrate the considered methods on real data, we examine the causal path from
higher education graduation to middle-age general intelligence in the UK Biobank,
which includes several potential binary, continuous and multi-dimensional media-
tors. This analysis shows that this effect is partially mediated by having a physical
occupation, and brain characteristics measured through MRI, but not by the brain
age, a popular MRI-derived phenotype.
KEYWORDS:
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1 INTRODUCTION

Causal inference in observational studies is primarily used to measure the causal effect of a treatment on an outcome. Neverthe-
less, in a lot of fields, disentangling the mechanism of action is just as important, as it allows us to identify potential intermediate
intervention targets, and more generally, deepen our understanding of the processes that lead to the observed outcome.
Causal mediation analysis aims at separating the (total) causal effect into two components: an indirect effect through a third

(group of) variable(s) called mediator(s), and a direct effect through alternative path(s)1. A central issue solving this question is
confounding, as even in the "ideal" case of a randomized controlled trial, only the exposure is randomized. Further control on the
mediator is thus necessary to identify the direct and indirect effects, as outlined by2 in the potential outcome framework3. Earlier
work on mediation was mostly based on parametric structural equations4,5,6, and neglected identifiability assumptions. Further
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work has clarified identification assumptions, and developed new estimation approaches in parametric and non-parametric set-
tings2,1,7,8,9,10,11,12,13,14,15,16. This has led to the development ofmore complex estimators, that proceed in two steps: first the fitting
of classification or regression models on observed data, and then the use of those models’ predictions to compute the effects of
interest. The models of the first step are called nuisance models, as they are not directly of use, and are generally parametric
linear models. Yet, the consistency of the different estimators relies on the consistency of at least a subset of those nuisance
models. When the parametric model fails to represent the actual underlying phenomenon, this is called model misspecification,
and can lead to erroneous prediction.
Another limitation of classical estimators is that most methods are dedicated to the case of a one-dimension binary mediator,

while the problem of handling several mediators is increasingly considered in the literature.17,18,19 have specified identifiability
assumptions for direct and indirect effects, either jointly through all mediators, or for a path-specific effect through one particular
mediator. An additional difficulty lies in potential causal relations between mediators17,18,20,21. Recent work22,23,24 has focused
on high dimension settings, where there exist a lot of mediators, potentially highly correlated, such as gene expression or medical
imaging. In 24, dimensionality reduction is performed first, using Principal Component analysis (PCA) while in23, Independent
Component Analysis (ICA) or a sparse version of PCA is sued instead; the objective being to compute a smaller number of
orthogonal "directions of mediation". Alternatively, 25,26 propose statistical tests to select only a relevant subset of mediators.
One then conducts an analysis of mediation using structural equations models with the classic approach of the product of
coefficients6,27, which relies on a linear parametric relation between the directions of mediation and the treatment, and between
the directions of mediation and the outcome.
In this work, we focus on the problem of estimating the direct and indirect effects of one or several mediators jointly (no path-

specific effect) using classical approaches, or more recent approaches that are robust to model misspecification. We propose new
variants of existing estimators, with more flexible machine learning models to account for complex relations between the vari-
ables of interest. We provide a comprehensive evaluation of classical and more recent methods on simulated data, extending the
work of28 for a binary mediator to the continuous and multi-dimensional mediators. We rely on a diversity of simulation set-
tings to explore the practical implications of violations of parametric model specifications, violations to the overlap assumption,
variations in the number of observations, and choice of the confounder and mediator variables. This benchmark provides a good
overview of available estimators, their validity conditions and limitations which constitutes a valuable guide to the practitioner.
To go beyond performance analysis on simulated data, we conduct several mediation analyses on real data from the UK

Biobank to explore cognitive functions in a cohort of middle-aged adults. UK Biobank is a prospective cohort of about 500,000
healthy participants in the UK with very thorough socio-demographic, medical, lifestyle, physical and cognitive assessment.
A subset of nearly 40,000 participants also underwent a more enhanced functional exploration including brain structural and
functional magnetic resonance Imaging (MRI). This unprecedentedly large imaging database allows us to assess potential role
of the brain structure in the shaping of cognitive functions, while observing potential confounders. The results obtained for
several potential mediators of different nature (binary, continuous and multidimensional) further illustrate the properties of the
different considered estimators.
The rest of the article is organized as follows. Section 2 formalizes the causal mediation analysis problem, with the definition

of the natural direct and indirect effects, and the associated identifiability assumptions. In Section 3, we present the estimators
evaluated, as well as the used underlying models and implementations. Section 4 presents in details the simulation process and
the main trends. An application of mediation analysis to decipher some aspects of the effect of education onmiddle-age cognitive
functions is proposed in Section 5. Finally, we discuss the overall results in Section 6.

2 PROBLEM SETTING: CAUSAL MEDIATION ANALYSIS

In this section, we introduce the potential outcome framework to define the causal quantities of interest. We then specify the
required assumptions to identify those quantities, i.e. estimate them with the data at our disposal.

2.1 Natural direct and indirect effect
The objective of mediation analysis is to quantify the part of the total effect achieved through the mediator, i.e. the indirect
effect, and the effect of the treatment without further intermediate, i.e. the direct effect. For each individual, we denote the
(binary) treatment T , the observed outcome Y , the mediator(s)M , and the covariate(s)X; covariates associated with at least two
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FIGURE 1 A general directed acyclic graph for mediation in causal inference. Each node represents a group of variables,
and arrows denote causal relations between them. The arrows also indicate the values of the natural direct and indirect effects
as specified in the structural equation model described in paragraph 3.1.1 and in the simulations.

variables among the treatment, mediator(s) and outcome are confounders and should be adjusted for. Let us note  , ,, the
respective supports of T , Y ,M andX. The relations between those variables are illustrated in Figure 1. Extending the potential
outcomes framework3, we can define M(t) and Y (t,M(t)) the potential mediator state and the potential outcome under the
treatment value t ∈ {0, 1}. For each unit, only one potential outcome and mediator state are observed. To define the unobserved
(counterfactual) outcomes and mediators, we assume that the observed outcome and mediator are the potential outcome and
mediator under the actual assigned treatment.
Assumption 1 (SUTVA (Stable Unit Treatment Values) and consistency).

M = TM(1) + (1 − T )M(0) and Y = TY (1,M(1)) + (1 − T )Y (0,M(0)) (1)
We then define the total average treatment effect (ATE) as:

Definition 1 (Total average treatment effect).
� = E[Y (1,M(1)) − Y (0,M(0))] (2)

To further decompose the total effect into natural direct and indirect effects1,20,21, we define cross-world potential outcomes
that correspond to varying the treatment, while maintaining the value of the mediator to the value it would have without changing
the treatment, and the opposite. The word "natural" is used to distinguish those effects from the controlled direct effect, also
defined by1, which consists in measuring the direct effect while intervening to artificially set the mediator to a fixed value.
We will not consider the estimation of the controlled direct effect in this study. Contrary to the previously mentioned potential
outcomes, where one of them is observed, cross-world outcomes can never be observed. Those additional terms allow us to
define the natural direct effect as
Definition 2 (Natural direct effect).

�(t) = E[Y (1,M(t)) − Y (0,M(t))], t ∈ {0, 1},

and the natural indirect effect
Definition 3 (Natural indirect effect).

�(t) = E[Y (t,M(1)) − Y (t,M(0))], t ∈ {0, 1}.

The ATE in equation (2) is the sum of the direct and indirect effects of opposite treatment states: � = �(0)+�(1) = �(1)+�(0),
resulting in well-defined effect decomposition.
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2.2 Identification assumptions
As mentioned above, the parameters of interest include both unobserved and unobservable terms. In addition to the SUTVA and
consistency assumptions, already introduced in the previous paragraph, identification requires additional assumptions:
Assumption 2 (Sequential conditional independence of the treatment9).

{Y (t′, m),M(t)} || T |X for all t′, t ∈ {0, 1} and m ∈ , (3)
where || denotes statistical independence.
Assumption 2 imposes the absence of unobserved confounders of the treatment and the outcome on the one hand, and of the

treatment and the mediator on the other hand.
Assumption 3 (Sequential conditional independence of the mediator9).

Y (t′, m) || M|T = t, X = x for all t′, t ∈ {0, 1}, m ∈  and x ∈  ,

Assumption 3 forbids the existence of unobserved confounders affecting both the mediator and the outcome.
Finally, a common support assumption (also called positivity or overlap) is needed

Assumption 4 (Positivity assumption).
P (T = t|X = x) > 0 and 0 < P (M(t) = m|T = t, X = x) for all t′, t ∈ {0, 1}, m ∈  and x ∈  .

Relying on Assumptions 2, 3, and 4 total effect, along with natural direct and indirect effects are identifiable. We give the
demonstration in the Appendix section S1 that the mean potential outcomes and cross-world potential outcomes needed to
compute the effects of interest can be identified non-parametrically, that is without any form restriction such as linearity.

2.3 The case of several mediators
If we now consider several mediators of interest, M = (M (1),… ,M (K)), and aim at computing the indirect effect through
all the mediators jointly, all the definitions and assumptions above can be written similarly, by just replacing the mediatorM
by a mediator vector M. However, identification of path-specific effects through one particular mediator requires additional
assumptions17,20 and is beyond the scope of this work.

3 OVERVIEW OF ESTIMATORS FOR MEDIATION ANALYSIS

In this study, we consider several estimators for the natural direct and indirect effects that apply to binary, continuous and/or
multi-dimensional mediators. We compare their properties, conditions of application and performances on simulated data with
binary and continuous multi-dimensional mediators in Section 4. This section introduces the different estimators, and provides
some details on the implementations used in the experiments. Some estimators embed a procedure for uncertainty estimation but
not all, so we restricted our comparison solely to the estimation of direct and indirect effects, and assess the variance of estimators
with several independent draws of data. We consider a sample of n i.i.d. observations denoted (Xi, Ti,Mi, Yi), i ∈ {1,… , n}.

3.1 Parametric estimators
3.1.1 Coefficient product
The method of coefficient product developed by6 is the first developed estimator for mediation analysis. It consists in assuming
the following structural equation model:

M(x, t) = �0 + �T t + xT �X + �M (4)
Y (x, t, m) = 0 + T t + xT X + Mm + �Y (5)

where �M and �Y are independent centered normal random variables.
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Then we have, after estimation of the regression parameters
�̂(0) = �̂(1) = ̂T
�̂(0) = �̂(1) = ̂M �̂T
�̂ = �̂(1) + �̂(0) = �̂(0) + �̂(1).

This estimator is consistent if the model for the outcome and for the mediator are both correctly specified. The model can be
easily extended to binarymediators or outcomes using logistic regressions, or to situations with interactions by adding interaction
terms to the structural equations29.

3.1.2 g-Computation
The following formula is demonstrated in section S1, where we denote fA=a and fA=a|B=b the probability density function of a
random variable A, unconditionally or conditionally given other random variable(s) B:

E
[

Y
(

t,M
(

t′
))]

= ∫ ∫ E[Y |T = t,M = m,X = x]fM=m|T=t′,X=xfX=xdmdx

It directly yields the mediation formula1,9,

�(t) = ∫ ∫ {E[Y ∣ T = 1,M = m,X = x] − E[Y ∣ T = 0,M = m,X = x]}fM=m∣T=t,X=xdmfX=xdx

�(t) = ∫ ∫ E[Y ∣ T = t,M = m,X = x]
{

fM=m∣T=1,X=x − fM=m∣T=0,X=x
}

dmfX=xdx.

In practice, we perform parametric or non-parametric estimation of �̂Y (t, m, x) for the conditional mean outcome E[Y ∣ T =
t,M = m,X = x] and f̂ (m|t, x) for the conditional mediator density fM=m∣T=t,X=x (or conditional probability if the mediator is
discrete), and the final effects are estimated as follows

�̂(t) = 1
n

n
∑

i=1

1
∑

m=0

{

(�̂Y (1, m,Xi) − �̂Y (0, m,Xi))f̂ (m|t, Xi)
}

,

�̂(t) = 1
n

n
∑

i=1

1
∑

m=0

{

�̂Y (t, m,Xi)(f̂ (m|1, Xi) − f̂ (m|0, Xi))
}

.

The g-Computation estimator is consistent if both plug-in models are correctly specified. The estimation of the conditional
mediator density is challenging for multi-dimensional mediators. Indeed, one can perform either parametric density estimation
with strong assumptions on the distribution and the variance-covariance matrix, or non-parametric density estimation, which
requires a number of observations that increases exponentially with the dimension30.

3.1.3 Simulation-based estimator
Simulation-based estimation31 consists in simulating unobserved potential outcomes and cross-world potential outcomes using
fitted estimators for the outcome and the mediator model to directly compute the indirect and direct effects. In current
implementation, such a method is implemented with linear models.

3.2 Semi-parametric estimators
3.2.1 Inverse probability weighting estimator (IPW)
The identifiability computation in step (A3) in Appendix S1 provides the ground for an inverse probability weighting-type
approach (IPW), developed in13.
Computation requires the estimation of two nuisance parameters, the conditional probability of treatment given covariatesX

p(X) = ℙ(T = 1 ∣ X), and the conditional probability of treatment given covariates and mediator(s) �(X) = ℙ(T = 1 ∣ X,M).
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In practical implementation, the weights are normalized for more stability; we can write the normalized estimator as follows

�̂(0) =
∑n
i=1 YiTi(1 − �̂(Mi, Xi))∕[�̂(Mi, Xi)(1 − p̂(Xi))]
∑n
i=1 Ti(1 − �̂(Mi, Xi))∕[�̂(Mi, Xi)(1 − p̂(Xi))]

−
∑n
i=1 Yi(1 − Ti)∕(1 − p̂(Xi))
∑n
i=1(1 − Ti)∕(1 − p̂(Xi))

�̂(1) =
∑n
i=1 YiTi∕p̂(Xi)
∑n
i=1 Ti∕p̂(Xi)

−
∑n
i=1 YiTi(1 − �̂(Mi, Xi))∕[�̂(Mi, Xi)(1 − p̂(Xi))]
∑n
i=1 Ti(1 − �̂(Mi, Xi))∕[�̂(Mi, Xi)(1 − p̂(Xi))]

The IPW estimator is consistent if parametric models for p and � are consistently estimated. The absence of estimation of the
density of the estimator(s) allows us to use this estimator when the mediator is continuous and/or multi-dimensional. However,
the total effect does not involve ℙ(T = 1 ∣ X,M), hence it is robust to misspecification of the mediator model.

3.2.2 Multiply-robust estimator
The inverse mediator density weighting implemented in the multiply-robust estimator12 is motivated by the last step A4 of the
identifiability computation in Appendix S1.
The estimator is derived using the sample analogue of the efficient influence function for computing potential outcomes. We

can then write12,28

�̂(0) = 1
n

n
∑

i=1

{[

Tif̂ (Mi|0, Xi)
p̂(Xi)f̂ (Mi|1, Xi)

−
1 − Ti

1 − p̂(Xi)

]

× (Yi − �̂Y (Ti,Mi, Xi))

+
1 − Ti

1 − p̂(Xi)
× (�̂Y (1,Mi, Xi) − �̂Y (0,Mi, Xi) − �̂(0, Xi)) + �̂(0, Xi)

}

(6)

�̂(1) = 1
n

n
∑

i=1

{

Ti
p̂(Xi)

[

Yi −  ̂(1, Xi) −
f̂ (Mi|0, Xi)
f̂ (Mi|1, Xi)

(Y − �̂Y (1,Mi, Xi))

]

−
1 − Ti

1 − p̂(Xi)
(�̂Y (1,Mi, Xi) −  ̂(0, Xi)) +  ̂(1, Xi) −  ̂(0, Xi)

}

(7)

with �̂Y (t, m, x) estimating the conditional mean outcome E[Y |T = t,M = m,X = x], f̂ (m|t, x) estimating the conditional
mediator density fM|T=t,X=x(m) (or conditional probability if the mediator is discrete), p̂(x) estimating the treatment propensity
score P (T = 1|X = x), �̂(t, x) estimating the conditional direct effect given X EM|T=t,X=x[E[Y |T = 1,M = m,X = x] −
E[Y |T = 0,M = m,X = x]|T = t, X = x] which is obtained by regressing �̂Y (1,M,X) − �̂Y (0,M,X) on X among those
with treatment T = t and  ̂(t, x) estimating EM|T=t,X=x[E[Y |T = 1,M = m,X = x]|T = t, X = x].
A very interesting property of this estimator is that it is triply-robust, as it remains consistent if at least two of the three

following models are well specified: (i) the conditional mean outcome, E[Y |T ,M,X], (ii) the conditional density ofM given
T ,X, and (iii) the treatment propensity score. This estimator is also efficient (under the nonparametric model) if (i), (ii), and (iii)
are all correctly specified. The estimation of the mediator conditional density prevents the use of this estimator for a continuous
and/or multi-dimensional mediator.

3.2.3 G-estimator
In16, the authors propose an estimator in the case where models for the conditional expectation of the mediator and outcome are
partially linear. The authors consider

E[M|T ,X] = �1T + f (X) (8)
E[Y |T ,M,X] = �2M + �3T + g(X) (9)

where f and g are arbitrary functions. The target parameters are � = (�1, �2, �3), while f , g, and p(X) = E[T |X] are nuisance
parameters. Both target and nuisance parameters are estimated jointly using an alternating estimation procedure. The estimation
of target parameters relies on the product of residuals after regressing out the terms with f, g, p. For nuisance parameters
estimation, a bias-reduction strategy is implemented32,33.
The G-estimator is consistent if models 8 and 9 hold, and if two out of three models for f, g, p are consistently estimated.

There is no estimation of the mediator conditional density, so the G-estimator can easily handle a continuous mediator, but not
a multi-dimensional mediator.



ABÉCASSIS ET AL 7

3.2.4 Double-Machine Learning for mediation estimator (medDML)
The multiply-robust estimator was extended in15, by removing the requirement to estimate the conditional mediator density
using Bayes’ law. Indeed, the authors demonstrate that

f (M|T = 1 − t, X)
p(T = t|X)f (M|T = t, X)

=
(1 − p(T = t|X,M))f (M|X)

1 − p(T = t|X)
p(T = t|X)

p(T = t|X,M)f (M|X)p(T = t|X)

=
1 − p(T = t|X,M)

p(T = t|X,M)(1 − p(T = t|X))

This new expression can be directly used in equations (6) and (7), lifting the previously mentioned restrictions for continuous
and/or multi-dimensional mediators. Additionally, the authors show that this new estimator is Neyman orthogonal, which is
crucial to the application of double machine learning, in addition to the use of cross-fitting34.

3.3 Implementation considerations
We re-implemented some of the considered estimators, using Python package scikit-learn35. This re-implementation has
allowed us more flexibility in the choice of algorithms for nuisance parameters estimation, in particular the use of random
forests36. We have also implemented variations around those estimators using regularization, probability calibration37,38 and
cross-fitting34. For the other estimators, we used existing implementation in R using the rpy2 package. The main characteristics
of available implementations for each estimator are presented in Table 1.

estimator binary continuous multi
dimensional

reference
R implementation

python
re-implementation

coefficient
product 3.1.1

x x x no linear regression for both the
mediator and the outcome mod-
els with a very small L2 regular-
ization (� = 10−5)

g-Computation
3.1.2

x - - no linear and logistic regression
(with or without L2 regulariza-
tion) or random forests to esti-
mate �̂Y and f̂

simulation-
based

estimator3.1.3

x x - function mediate in the R
package mediation 39, with
parametric linear models for the
mediator and outcome models

no

IPW 3.2.1 x x x function medweight in the R
package causalweight 40 with
logit or probit regression to esti-
mate conditional probabilities

logistic regression (with or
without L2 regularization) or
random forests to estimate
conditional probabilities

multiply-
robust

estimator
3.2.2 x - - no linear models (with or with-

out L2 regularization) or non-
parametric estimators (random
forests)

g-estimator
3.2.3

x x - function G_estimation from
the plmed R package (http://
github.com/ohines/plmed) 16

no

medDML 3.2.4 x x x function medDML in the R pack-
age causalweight 40, with no
trimming, and default parame-
ters for the other options

no

TABLE 1 Characteristics of estimators and their implementations The columns "binary", "continuous" and "multi-
dimensional" refer to the ability of methods to handle mediator of this type. Symbols "x" and "-" mean possible or impossible
respectively. Most estimators have available implementations in R. We have reimplemented some of them in Python to allow
more flexibility in the choice of nuisance models. Our implementations are available as a Python package at https://github.com/
judithabk6/med_bench.

http://github.com/ohines/plmed
http://github.com/ohines/plmed
https://github.com/judithabk6/med_bench
https://github.com/judithabk6/med_bench
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4 PERFORMANCES ON SIMULATIONS

We assess the performances of the estimators presented in the previous section using simulated data. We tried to cover a variety
of situations to establish the strengths and limitations of each approach. We first present our simulation settings, and then our
main findings.

4.1 Generation of simulated data
We have generated simulated datasets with a number of varying characteristics: the number of observations n ∈
{500, 1000, 10000}, the dimension of the covariates X, either 1, 5 or 20, the dimension (and variable type - binary or continu-
ous) of the mediatorM , either 1, 5 or 20, the linearity (or not) of the mediator and outcome models, the mediated proportion,
through varying the treatment parameter in the mediator model.
We note K the number of dimensions of the confounderX, and Kobs the observed number of dimensions ofX (Kobs ≥ K) to

reproduce the common situation where the analyst does not know the true set of confounder variables. We define a confounder as
a variable causally associated with at least two the three variable types treatment, outcome and mediator. We follow guidelines
from41 and associate the (potentially disjoint) sets T − Y , T − M and M − Y confounders in a single set X. Similarly for
mediators, L is the actual number of dimensions of the mediator (an actual mediator is characterized by a non-zero causal effect
from the treatment on the mediator, and a non-zero effect of the mediator on the outcome), and Lobs the observed number of
dimensions of the mediator.
We have used the following simulation framework

X ∼  (0, IKobs
)

T ∼ Bernoulli(expit(�TX)) with � = [1K ⋅ 0Kobs−K ]∕K
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

M ∼ Bernoulli(expit(u(�TXX) + 2wTT )) ifM is binary and L = Lobs = 1
with �X = [1K ⋅ 0Kobs−K ]∕K
and M = 1

Ml ∼ u(�TXX) +wT (l%3 + 1)T + (0, �2M ) ifM is continuous
with �X having 2 randomly picked coefficients
set to 1 among the first Kobs and 0 otherwise
and M = [1L ⋅ 0Lobs−L] ∗ 0.5∕L

Y ∼ u(TXX) + TMM + TT + (0, �2Y )

where 1d and 0d are vectors of length d containing only ones and zeros respectively, [v ⋅ w] denotes the operation of
concatenation of vectors v and w, a%b the rest of the euclidean division of a by b, Id the identity matrix of dimension d.
The function u is introduced to add non-linearity to the model. It can be set to different values if one wants misspecification

for the mediator model, the outcome model or both.
• in the linear case, u is identity,

• for misspecification, u(x) = 1
1+e−x

∀x ∈ ℝ

• for severe misspecification u(x) = 3 sin(3x) ∀x ∈ ℝ

The coefficientwT is used to modulate the mediated proportion. It was set to 0.1 in the low mediated proportion setting, 1 for
medium, and 5 for high.
We have considered six combinations of dimensions for covariates and mediators, three with a binary mediator in one dimen-

sion, and an increasing dimension for covariates: (i) K = Kobs = L = Lobs = 1, (ii) K = Kobs = 5;L = Lobs = 1, (iii)
K = 5;Kobs = 20;L = Lobs = 1, and three with multidimensional continuous mediators: (iv) K = Kobs = L = Lobs = 5, (v)
K = 5;Kobs = 20;L = Lobs = 5 and (vi) K = 5;Kobs = 20;L = 5;Lobs = 20.
For all simulations, we have set �M = �Y = 0.5 and T = 1.2.
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The true effects of interest are defined as
�(0) = �(1) = T

�(0) = �(1) =

{

E
[(expit(f (�TXX) + �T ) − expit(f (�TXX)

)

M
] ifM is binary

�TT M ifM is continuous
We generated 30 repetitions for each of the 378 generated combinations of parameters.

4.2 Results
For readability of the figures, we present results for dimension combinations (i), (iii) and (iv), which we find representative
of other results, and for linear and severe misspecifications. The "milder" misspecification exhibited results close to the linear
case, indicating that important non-linearities are required to obtain inconsistent estimates for some estimators. We also have
not seen significant variations in the results when including additional variables that are not confounders in the adjustment set,
and similarly for adding mediators that are not actual mediators for estimation.

4.2.1 General trends
We have applied the seven mediation estimators (with a total of 34 variant implementations) considered in this study on a variety
of simulated datasets with varying dimensions of both mediators and covariates, and degree of non-linearity of the outcome
and mediator models. We compare the relative error for the total, direct and indirect effect, defined as �̂−�

�
, for example for the

total effect �. We first compare estimators using the most simple setting (non-regularized linear models in Figures 2 and 3),
and then assess the contribution of more complex estimation approaches. In Figure 2, we present the errors for the total, direct
and indirect effect with a "medium" mediated proportion and n = 10, 000 observations. The total effect is almost always well
estimated, but not the direct and indirect effects that exhibit opposite errors, leading to higher relative error for the indirect
effect, as this effect is much smaller in magnitude. For the simplest simulations with a one-dimensional binary mediator and
one-dimensional confounder, the different estimators behave as expected with very small errors in the "linear" setting where all
models are well specified, small errors for the coefficient product, the g-computation and the simulation-based estimators for
severe misspecification of the mediator or the outcome models. The IPW estimator exhibits a large error when the mediator
model is misspecified, but is robust to outcome model misspecification. The multiply-robust estimator has a low error when
either the outcome or the mediator model is misspecified, as expected. The G-estimator is surprisingly not robust to the outcome
model misspecification, although the partially linear outcome model should account for the simulated deviation from the linear
model. Finally, the medDML R implementation fails to produce an estimation with a one-dimensional confounder. When both
the outcome and the mediator models are misspecified, all estimators fail. Results are very similar when considering confounder
of dimension 20, of which only 5 dimensions are true confounders (other dimensions where not involved in the treatment, the
mediator or the outcome models). We verify the multiply-robust property of the medDML estimator in this setting. Regarding
the multi-dimensional setting, only three estimators work. The coefficient product method provides surprisingly good results,
with no error when up to one model is misspecified, while the medDML and IPW estimators fail to estimate the direct and
indirect effects in all cases.
In Figure 3, we consider the influence of the mediated proportion, defined as �(t)

�
. A high mediated proportion results in a high

instability of the IPW and the medDML estimators. With further exploration, the explanation lies in the prediction of propensity
scores from the mediator: with a high mediated proportion, which is generated in our simulations with a high coefficient for
the treatment in the mediator model, violations of the positivity assumptions can occur. The propensity score gets very close
to either 0 or 1, leading to an impaired re-weighting of the samples. This problem appears even faster with multi-dimensional
mediators. Interestingly, in the case where both the mediator and the outcome models are misspecified, error increases for all
estimators for the direct effect estimation, but decreases for the indirect error estimation (Figure S2).

4.2.2 Some insights on how to practically estimate nuisance parameters
We further explore the effect of some implementation variations of nuisance parameters estimation, namely the use of non-
parametricmodels such as random forests36 (Figure 4), the regularization ofmachine learningmodels (Figure S4), the calibration
of predicted probabilities37,38 (Figures S8 and S9), and finally the use of cross-fitting34 (Figures S5, S6 and S7).



10 ABÉCASSIS ET AL

0.00

0.05

ca
us

al
 e

ffe
ct

re
la

tiv
e 

er
ro

r
linear

0.2

0.1

0.0

severe misspecification M

0.0

0.1

severe misspecification Y

0

1

1D
 X - 1D

 M
(binary)

severe misspecification M & Y

0.00

0.01

0.02

ca
us

al
 e

ffe
ct

re
la

tiv
e 

er
ro

r

0.050

0.025

0.000

0.025

0.02

0.00

0.02

0.0

0.1

0.2 20D
 X - 1D

 M
(binary)

total direct indirect
number of units

1.0

0.5

0.0

0.5

ca
us

al
 e

ffe
ct

re
la

tiv
e 

er
ro

r

Coefficient product
G-computation (no regularization)

simulation-based estimator
IPW (no regularization)

multiply robust (no regularization)
medDML

G-estimator

total direct indirect
number of units

2

0

total direct indirect
number of units

1

0

total direct indirect
number of units

2

0

2 5D
 X - 5D

 M
(continuous)

FIGURE 2 Total and natural direct and indirect effects.We show results for four scenarii of generative model specification,
violating or not the parametric linear nuisance models of some estimators. Each column corresponds to a distinct specification of
simulated models. The rows correspond to different mediator and covariate dimensions, labeled on the right. Each dot represents
the average relative error (i.e. �̂−�

�
, for example for the total effect �) over 30 repetitions, and the error bars are bootstrap 95%

confidence intervals. All simulations are in the "medium" mediated proportion framework with n = 10, 000 observations. The
medDML method does not accept one-dimensional covariates so we see no result for that estimator on the first row. Similarly,
most estimators only handle binary one-dimensional mediators, and have no results for the third row. The total effect is generally
well estimated in all situations, but not the direct and indirect effect. The indirect effect is smaller which leads to a higher relative
error than for the direct effect. Model misspecifications engenders estimation errors for most estimators.

Using forests for nuisance parameters estimation (Figure 4) generally yields good results, similar to the parametric models
when they are well specified, but with a slower convergence. The perform better when the models are misspecified. In the latter
case, the number of samples required to obtain unbiased estimation is high. The use of regularized instead of non-regularized
models for estimation with parametric models (Figure S4) has little effect. Probability calibration (Figures S8 and S9) has a slight
positive effect, but the IPW estimator remains quite unstable, and calibration can either improve or damage the performance.
Finally, the use of cross-fitting has little impact on error in our simulations, but requires more observations (Figures S5, S6
and S7).

5 APPLICATION TO COGNITIVE FUNCTION IN THE UK BIOBANK

Education is generally associated with an increased intelligence42. However, the underlying mechanisms remain elusive. The
currently admitted hypothesis is the one of the "cognitive reserve", which would rely on the structure and biological functioning
of the brain through the phenomenon of neuroplasticity43. Yet, evidence for this hypothesis remains limited, as well as the effect
size of this effect. Mediation analysis provides a very well suited framework to properly identify this effect. The UK Biobank
imaging study44 constitutes an opportunity to tackle this question, with an unprecedented cohort size with brain MRI (a proxy to
brain state and current cognitive capabilities), and a very comprehensive assessment of lifestyle, physical and socio-demographic
characteristics of the participants. In this work, we have retained a sub-group of 16,157 participants having undergone brain
imaging.
We will consider three possible mediators: (i) a binary indicator for having a physical job, a proxy for the complexity of

occupation, deemed to also have an impact on cognitive functions, (ii) brain age delta, representing the difference between the
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FIGURE 3 Effect of the mediated proportion on direct effect estimation. The mediated proportion is the ratio of the natural
indirect effect and the total effect. As it increases, the overlap assumption can be violated. Four scenarii (in columns) and three
mediator and covariates dimensions (in rows) are considered.We show results for four scenarii of generative model specification,
violating or not the parametric linear nuisance models of some estimators. Each column corresponds to a distinct specification of
simulated models. The rows correspond to different mediator and covariate dimensions, labeled on the right. Each dot represents
the average relative error (i.e. �̂−�

�
for the natural direct effect �) over 30 repetitions, and the error bars are bootstrap 95%

confidence intervals. All simulations are with a number of observations n = 10, 000. The medDML method does not accept
one-dimension covariates so we see no result for that estimator on the first row. Similarly, most estimators only handle binary one-
dimension mediators, and have no results for the third row. We see that the IPW and medDML estimators exhibit an important
relative error in the high mediated proportion setting with the one-dimensional mediator (two first rows), and for the medium
and high mediated proportions with the multi-dimensional mediators.

age predicted from brain imaging and the actual age, which is a proxy for brain health, and (iii) the first ten principal components
of brain images-derived variables to represent more generally the brain characteristics. We adjust for sex, age, the center of
assessment (closest to the residence), Townsend deprivation index, present and past smoking statuses, alcohol consumption
frequency, early life factors (country of birth, adoption status, maternal smoking status...), and body mass index (BMI). For
the brain imaging mediator (mediator (iii)), we also adjusted for head size, and head position in the MRI machine. Cognitive
function was assessed by 10 distinct tests, which we summarized with dimension reduction to obtain the general intelligence
factor (g-factor)45. The codes for all used variables are available in Supplementary Table S1.
We have applied a relevant and representative subset of the considered estimators, and present results in Figures 5, 6 and 7.

The uncertainty of estimation was assessed by 15 bootstrap repetitions.
We observe no mediation through brain age delta (Figure 6), which is consistent with the recent finding that educational

attainment does not influence brain aging46, but a slight indirect effect of having a physical job (Figure 5), which is in line with
the fact that occupation also influences brain reserve, and eventually a small indirect effect of brain imaging (Figure 7) which
could support the potential role of neuroplasticity.
Overall, most methods provide similar results for those four problems. We observe that the G-estimator failed to provide

an estimate in all cases, that medDML is highly unstable (we adjusted the axes limits to be able to see more subtle differ-
ences between the other estimators), as well as multiply robust estimator without regularization. This outlines the relevance of
introducing more robust extended estimators for real-life applications.
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FIGURE 4 Effect of using a parametric or a non-parametric model for plug-in nuisance parameters estimation. We
show results for four scenarii of generative model specification, violating or not the parametric linear nuisance models of some
estimators. Each column corresponds to a distinct specification of simulated models. The rows correspond to different mediator
and covariate dimensions, labeled on the right. Each dot represents the average relative error (i.e. �̂−�

�
for the natural direct effect

�) over 30 repetitions, and the error bars are bootstrap 95% confidence intervals. All simulations are in the "medium" mediated
proportion framework. The medDML method does not accept one-dimension covariates so we see no result for that estimator
on the first row. Similarly, most estimators only handle binary one-dimension mediators, and have no results for the third row.
We compare the estimators implemented in this study and compare linear parametric and random forest for fitting nuisance
models. In most cases, the linear implementation has a smaller error than the random forest one, due to a smaller convergence
rate, except in the case where both the mediator and the outcome models are misspecified.

6 DISCUSSION AND CONCLUSION

In this study, we have conducted a thorough evaluation of the main estimators for mediation analysis, in a vast range of 378
distinct settings, covering in particular binary, continuous and multi-dimensional mediators, and several degrees of nuisance
models misspecification. We also vary the number of observations, and the mediated proportions (strongly associated with
violations of the positivity assumption for high indirect effect), which had not been considered for evaluation to the best of
our knowledge. This allows us to assess the robustness of estimators to several violations of their consistency assumptions.
Additionally, we have extended existing estimators to include recommended implementation strategies, namely regularization,
use of non-parametric models, probability calibration and cross-fitting, with a total of 34 estimator variants. Our evaluation
strategy also proposes a systematic analysis of their relevance.
Hence, this work allows us to provide practical recommendations. First of all, methods involving inverse probability weighting

are unstable under some circumstances and should be used with great care, in particular regarding the overlap assumption,
which is an issue in high-dimensional settings47. This nonetheless underlines that all other estimators are robust to violations of
the overlap assumption. The use of random forests for nuisance parameter estimation requires more data, and hence generally
hurts the performance at a fixed sample size, unless the parametric model is highly misspecified. The use of regularization and
calibration has a very small effect, but tends to slightly improve performances. Finally cross-fitting is generally beneficial, except
for small sample sizes, where it can increase the estimation error. Overall, the multiply robust estimator exhibits very promising
results, even when non-parametric algorithms are used for nuisance parameters estimation. However, it only applies to binary
mediators in its current implementation. In the multi-dimensional mediator setting, estimation seems unreliable, and the product
of coefficients provides acceptable results in most settings.
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FIGURE 5Mediation analysis of a physical job, for the effect on education on cognitive functions. The total, natural direct
and indirect effects are shown in the panels from left to right. The scale was adjusted to show most results in details, so that the
boxplots of the medDML and multiply robust (without regularization) estimators are cropped. The G-estimator method failed
on this dataset. With the exception of medDML, G-estimator and the unregularized multiply robust estimator implementation,
all estimators similar results for the total, direct and indirect effect, with a small but non-null indirect effect of a physical job.

An original finding of our study is the influence of the mediated proportion on the estimation error. A detailed analysis
of simulated datasets exhibiting unstable predictions shows that a higher mediated proportion is associated with violations of
the overlap assumption. As a consequence, the practitioner should consider the expected mediated proportion as an important
criterion, and preferentially select an estimator robust to violations of the overlap assumption, in particular for multi-dimensional
settings.
This article completes and extends a previous performance comparison of estimators for mediation analysis by Huber et. al28.

First, we consider continuous and multi-dimensional mediators beyond the restrictive case of a binary mediators, although very
few methods are currently available to handle them. We evaluate additional estimators or extensions of existing estimators that
were not considered in this previous study. Finally, we also broaden the simulation spectrum to include violations of the linear
model assumption, necessary for the consistency of some estimators, and highlight the sensitivity or robustness properties of
the different estimators to violations of those assumptions.
Although the implementation of variants of existing estimators yields only mild improvements in terms of performance, it

is of critical importance for off-the-shelf application to real data. Indeed, high-dimensional data are usually noisy, sometimes
redundant, some variablesmight be uninformative due to a low variance in the sampled observations. In that setting, data cleaning
is the most time-consuming step, so the robustness of implementations to corrupted data can highly impact the practitioner’s
ability to routinely use causal mediation analysis.
Our work presents however some limitations. The first and most important one lies on the use of simulated data, which is

innately limited, despite our best efforts to cover a lot of different realistic settings. An aspect that was not considered in our
simulations is the potential interactions between the treatment, the mediators and the covariates, which would require additional
simulations.
This study highlights a number of potential research directions, in particular for estimators able to handle continuous or multi-

dimensional mediators. As of now, only the coefficient product has satisfactory performances in most settings. A first line of
work consists in increasing the stability of inverse-propensity based methods, with several solutions proposed outside of the
mediation field48,49. Some clarification is also needed on how to best leverage more complex machine learning approaches to
better estimate causal quantities.



14 ABÉCASSIS ET AL

0.70 0.75 0.80 0.85
total effect

Coefficient product
medDML

G-estimator
IPW (no regularization & cross-fitting)

IPW (regularization & cross-fitting)
IPW (regularization & calibration & cross-fitting)

IPW (forest & cross-fitting)
IPW (forest & calibration & cross-fitting)

G-computation (no regularization & cross-fitting)
G-computation (regularization & cross-fitting)

G-computation (regularization & calibration & cross-fitting)
G-computation (forest & cross-fitting)

G-computation (forest & calibration & cross-fitting)
multiply robust (no regularization & cross-fitting)

multiply robust (regularization & cross-fitting)
multiply robust (regularization & calibration & cross-fitting)

multiply robust (forest & cross-fitting)
multiply robust (forest & calibration & cross-fitting)

0.70 0.75 0.80 0.85
direct control effect

0.02 0.01 0.00 0.01 0.02
indirect treated effect

0.75 0.80 0.85
total effect

Coefficient product
medDML

G-estimator
IPW (no regularization & cross-fitting)

IPW (regularization & cross-fitting)
IPW (regularization & calibration & cross-fitting)

IPW (forest & cross-fitting)
IPW (forest & calibration & cross-fitting)

G-computation (no regularization & cross-fitting)
G-computation (regularization & cross-fitting)

G-computation (regularization & calibration & cross-fitting)
G-computation (forest & cross-fitting)

G-computation (forest & calibration & cross-fitting)
multiply robust (no regularization & cross-fitting)

multiply robust (regularization & cross-fitting)
multiply robust (regularization & calibration & cross-fitting)

multiply robust (forest & cross-fitting)
multiply robust (forest & calibration & cross-fitting)

0.75 0.80 0.85
direct control effect

0.02 0.01 0.00 0.01 0.02
indirect treated effect

FIGURE 6 Mediation analysis of the brain age delta, binarized by its sign (panel a) or treated as a continuous variable
(panel b). The total, natural direct and indirect effects are shown in the panels from left to right. The scale was adjusted to show
most results in details, which crops the boxplots of the medDML and multiply robust (without regularization) estimators. For the
binarized mediator (panel a), the G-estimator method failed on this dataset. In panel b, the considered mediator is continuous, so
only the coefficient product, the IPW and the medDML estimators provided results. Both analyses consistently find no indirect
effect through the brain age delta. With the exception of medDML, G-estimator and the unregularized multiply robust estimator
implementation, all estimators found no indirect effect of the brain age delta, both for its binarized and continuous versions.
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FIGURE 7 Mediation analysis of 10 variables summarizing brain imaging. The total, natural direct and indirect effects
are shown in the panels from left to right. We adjusted the scale to show most results in details, which crops the boxplots
of the medDML estimator. The mediator considered here has 10 dimensions, so only the coefficient product, the IPW and
the medDML estimators provided results. All estimators but the medDML found a non-null indirect effect of the principal
components extracted from the brain imaging variables.
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APPENDIX

S1 IDENTIFIABILITY OF THE TOTAL EFFECT, AND THE NATURAL DIRECT AND
INDIRECT EFFECT

In this section, we demonstrate that the potential outcomes defined in Section 2 are identified under Assumptions 1, 2, 3 and 4.
We denote fA=a and fA=a|B=b the probability density function of a random variable A, unconditionally or conditionally given
other random variable(s) B:
Let us first consider the potential outcomes Y (t,M(t)):

E [Y (t,M (t))]
=E [E [Y (t,M(t))|X = x]]
=E [E [Y (t,M(t))|T = t, X = x]]
=E [E [Y |T = t, X = x]]

=E
[

E
[

Y ⋅I{T=t}
ℙ(T=t|X)

|X = x
]]

=E
[

Y ⋅I{T=t}
ℙ(T=t|X)

]

(A1)

sequential ignorability (assumption ??)
SUTVA (consistency)
overlap (assumption ??)

And then the cross-world potential outcomes Y (t,M(t′)).
E
[

Y
(

t,M
(

t′
))]

= E
[

E
[

Y
(

t,M
(

t′
))

|X = x
]]

= E
[

E
[

E [Y (t, m)) |X = x,M(t′) = m
]]

= ∫∫ E
[

Y (t, m)|M
(

t′
)

= m,X = x
]

fM(t′)=m|X=xdmfX=xdx
= ∫∫ E[Y |T = t,M = m,X = x]fM(t′)=m|X=xfX=xdmdx
= ∫∫ E[Y |T = t,M = m,X = x]fM=m|T=t′,X=xfX=xdmdx (A2)
= ∫∫ E[Y |T = t,M = m,X = x] ⋅ ℙ(T=t′|M=m,X=x)

ℙ(T=t′|X=x)
fM=m|X=xdmfX=xdx

=E
[

E
[

E
[

Y ⋅I{T=t}
ℙ(T=t|M,X)

|M,X
]

⋅
ℙ(T=t′|M,X)
ℙ(T=t′|X)

|X
]]

=E
[

Y ⋅I{T=t}
ℙ(T=t|M,X)

⋅
ℙ(T=t′|M,X)
ℙ(T=t′|X)

]

(A3)
=E

[

Y ⋅I{T=t}
ℙ(T=t|X)

⋅
f(M=m|T=t′,X)
f (M=m|T=t,X)

]

(A4)

ignorability (assumption ??)
and consistency (SUTVA)
ignorability (assumption ??)

S2 EXTENDED RESULTS ON SIMULATIONS

In this section, we report more thoroughly the results on simulations, including results for the total and indirect effects, and the
effect of calibration and cross-fitting for all nuisance parameters estimation algorithms.
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FIGURE S1 Effect of sample size on total, direct and indirect effects estimation. All simulations are in the "medium" medi-
ated proportion framework. Four scenarii (in columns) and three mediator and covariates dimensions (in rows) are considered.
The mediated proportion was fixed to "medium".
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FIGURE S2 Effect of the mediated proportion on total, direct and indirect effects estimation. All simulations are with
n = 1000 observations. Four scenarii (in columns) and three mediator and covariates dimensions (in rows) are considered. The
mediated proportion was fixed to "medium".
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FIGURE S3 Effect of using a parametric or a non-parametric model for plug-in nuisance parameters estimation. All
simulations are in the "medium" mediated proportion framework. Four scenarii (in columns) and three mediator and covariates
dimensions (in rows) are considered. The mediated proportion was fixed to "medium".
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FIGURE S4 Effect of using regularization for plug-in nuisance parameters estimation.All simulations are in the "medium"
mediated proportion framework. Four scenarii (in columns) and three mediator and covariates dimensions (in rows) are
considered. The mediated proportion was fixed to "medium".
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FIGURE S5 Effect of using cross-fitting for plug-in nuisance parameters estimation with a non-regularized parametric
model. All simulations are in the "medium" mediated proportion framework. Four scenarii (in columns) and three mediator and
covariates dimensions (in rows) are considered. The mediated proportion was fixed to "medium".
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FIGURE S6 Effect of using cross-fitting for plug-in nuisance parameters estimation with a regularized parametric
model. All simulations are in the "medium" mediated proportion framework. Four scenarii (in columns) and three mediator and
covariates dimensions (in rows) are considered. The mediated proportion was fixed to "medium".
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FIGURE S7 Effect of using cross-fitting for plug-in nuisance parameters estimation with a non-parametric model. All
simulations are in the "medium" mediated proportion framework. Four scenarii (in columns) and three mediator and covariates
dimensions (in rows) are considered. The mediated proportion was fixed to "medium".
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FIGURE S8 Effect of using calibration for plug-in nuisance parameters estimation with a parametric regularized model.
All simulations are in the "medium" mediated proportion framework. Four scenarii (in columns) and three mediator and
covariates dimensions (in rows) are considered. The mediated proportion was fixed to "medium".
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FIGURE S9 Effect of using calibration for plug-in nuisance parameters estimation with a non-parametric model. All
simulations are in the "medium" mediated proportion framework. Four scenarii (in columns) and three mediator and covariates
dimensions (in rows) are considered. The mediated proportion was fixed to "medium".
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S3 UK BIOBANK APPLICATION

To apply mediation analysis on the cognitive functions in the UK Biobank, we have considered four potential mediators. For
each of them, we have selected relevant confounding variables. We have selected participants for which all required variables
were available for the four problems, resulting in a subset of 16,157 participants. The list of all used variables is presented in
Supplementary Table S1.

Variable role constructed summary Field or category ID Variable name

outcome g-factor

Field 398 Number of correct matches in round
Field 20023 Mean time to correctly identify matches
Field 20018 Prospective memory result
Field 20016 Fluid intelligence score
Field 6348 Duration to complete numeric path
Field 6350 Duration to complete alphanumeric path
Field 23324 Number of symbol digit matches made correctly
Field 21004 Number of puzzles correct
Field 6373 Number of puzzles correctly solved
Field 20197 Number of word pairs correctly associated

mediator 10 PCs

Category 134 Diffusion MRI skeleton measurements
Category 1101 Regional grey matter volumes (FAST)
Field 25001 Volume of peripheral cortical grey matter (normalised for head size)
Field 25005 Volume of grey matter (normalised)
Field 25009 Volume of brain, grey+white matter (normalised)
Field 25011 Volume of thalamus (left)
Field 25012 Volume of thalamus (right)
Field 25013 Volume of caudate (left)
Field 25014 Volume of caudate (right)
Field 25015 Volume of putamen (left)
Field 25016 Volume of putamen (right)
Field 25017 Volume of pallidum (left)
Field 25018 Volume of pallidum (right)
Field 25019 Volume of hippocampus (left)
Field 25020 Volume of hippocampus (right)
Field 25021 Volume of amygdala (left)
Field 25022 Volume of amygdala (right)
Field 25023 Volume of accumbens (left)
Field 25024 Volume of accumbens (right)
Field 25025 Volume of brain stem + 4th ventricle)

mediator at least
one of

Field 806 Job involves mainly walking or standing
Field 816 Job involves heavy manual or physical work
Field 826 Job involves shift work

confounders

Field 31 Sex
Field 21003 Age when attended assessment centre
Field 54 UK Biobank assessment centre
Field 6142 Current employment status
Field 189 Townsend deprivation index at recruitment
Field 20160 Ever smoked
Field 1239 Current tobacco smoking
Field 1249 Past tobacco smoking
Field 1647 Country of birth (UK/elsewhere)
Field 1677 Breastfed as a baby
Field 1687 Comparative body size at age 10
Field 1697 Comparative height size at age 10
Field 1707 Handedness (chirality/laterality)
Field 1767 Adopted as a child
Field 1777 Part of a multiple birth
Field 1787 Maternal smoking around birth
Field 1558 Alcohol intake frequency.
Field 21001 Body mass index (BMI)
Field 25000 Volumetric scaling from T1 head image to standard space
Field 25756 Scanner lateral (X) brain position
Field 25757 Scanner transverse (Y) brain position
Field 25758 Scanner longitudinal (Z) brain position
Field 25759 Scanner table position

treatment Field 6138 Qualifications

TABLE S1 UK Biobank Field codes for all variables used
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