med_bench.estimation.mediation_coefficient_product
.CoefficientProduct#
Usage examples at the bottom of this page.
- class CoefficientProduct(regularize: bool, **kwargs)[source]#
Coefficient Product estimatation method class
- cross_fit_estimate(t, m, x, y, n_splits=1)#
Estimate causal effect on data with cross-fitting
- Parameters:
array-like (y) – treatment value for each unit, binary
(n_samples) (shape) – treatment value for each unit, binary
array-like – mediator value for each unit, here m is necessary binary and uni- dimensional
(n_samples) – mediator value for each unit, here m is necessary binary and uni- dimensional
array-like – covariates (potential confounders) values
(n_samples (shape) – covariates (potential confounders) values
n_features_covariates) – covariates (potential confounders) values
array-like – outcome value for each unit, continuous
(n_samples) – outcome value for each unit, continuous
- fit(t, m, x, y)[source]#
Fits nuisance parameters to data
- Parameters:
array-like (y) – treatment value for each unit, binary
(n_samples) (shape) – treatment value for each unit, binary
array-like – mediator value for each unit, here m is necessary binary and uni- dimensional
(n_samples) – mediator value for each unit, here m is necessary binary and uni- dimensional
array-like – covariates (potential confounders) values
(n_samples (shape) – covariates (potential confounders) values
n_features_covariates) – covariates (potential confounders) values
array-like – outcome value for each unit, continuous
(n_samples) – outcome value for each unit, continuous